Involvement of ethylene and nitric oxide in cell death in mastoparan-treated unicellular alga Chlamydomonas reinhardtii.
نویسندگان
چکیده
This work demonstrates a contribution of ethylene and NO (nitric oxide) in MP (mastoparan)-induced cell death in the green algae Chlamydomonas reinhardtii. Following MP treatment, C. reinhardtii showed massive cell death, expressing morphological features of PCD (programmed cell death). A pharmacological approach involving combined treatments with MP and ethylene- and NO-interacting compounds indicated the requirement of trace amounts of both ethylene and NO in MP-induced cell death. By employing a carbon dioxide laser-based photoacoustic detector to measure ethylene and a QCL (quantum cascade laser)-based spectrometer for NO detection, simultaneous increases in the production of both ethylene and NO were observed following MP application. Our results show a tight regulation of the levels of both signalling molecules in which ethylene stimulates NO production and NO stimulates ethylene production. This suggests that, in conjunction with the elicitor, NO and ethylene cooperate and act synchronously in the mediation of MP-induced PCD in C. reinhardtii. To the best of our knowledge, this is the first report on the functional significance of ethylene and NO in MP-induced cell death.
منابع مشابه
Copper-induced proline synthesis is associated with nitric oxide generation in Chlamydomonas reinhardtii.
Excess copper affects the growth and metabolism of plants and green algae. However, the physiological processes under Cu stress are largely unknown. In this study, we investigated Cu-induced nitric oxide (NO) generation and its relationship to proline synthesis in Chlamydomonas reinhardtii. The test alga accumulated a large amount of proline after exposure to relatively low Cu concentrations (2...
متن کاملUpdate on the Circadian Clock in Chlamydomonas reinhardtii The Circadian Clock in Chlamydomonas reinhardtii. What Is It For? What Is It Similar To?
The physiology of the circadian (daily) clock has been well studied in the unicellular eukaryote Chlamydomonas reinhardtii. Circadian rhythms of phototaxis, chemotaxis, cell division, UV sensitivity, and adherence to glass have been characterized in this green alga. Circadian phototaxis was even shown to operate in outer space! The related phenomenon of photoperiodic time measurement of germina...
متن کاملA complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii.
Endogenous small RNAs function in RNA interference (RNAi) pathways to control gene expression through mRNA cleavage, translational repression, or chromatin modification. Plants and animals contain many microRNAs (miRNAs) that play vital roles in development, including helping to specify cell type and tissue identity. To date, no miRNAs have been reported in unicellular organisms. Here we show t...
متن کاملInhibition of target of rapamycin signaling by rapamycin in the unicellular green alga Chlamydomonas reinhardtii.
The macrolide rapamycin specifically binds the 12-kD FK506-binding protein (FKBP12), and this complex potently inhibits the target of rapamycin (TOR) kinase. The identification of TOR in Arabidopsis (Arabidopsis thaliana) revealed that TOR is conserved in photosynthetic eukaryotes. However, research on TOR signaling in plants has been hampered by the natural resistance of plants to rapamycin. H...
متن کاملThe TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii
Cell growth is tightly coupled to nutrient availability. The target of rapamycin (TOR) kinase transmits nutritional and environmental cues to the cellular growth machinery. TOR functions in two distinct multiprotein complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). While the structure and functions of TORC1 are highly conserved in all eukaryotes, including algae and plants, TOR...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell biology international
دوره 34 3 شماره
صفحات -
تاریخ انتشار 2010